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Abstract-An exact analytical solution is presented for the steady-state temperature distribution in and 
around a heat generating sphere buried in a semi-infinite solid with an isothermal surface. This analysis does 
not require that the thermal conductivities of the medium and the sphere LX equal. The exact solution, derived 
using a bispherical coordinate system, is compared with an approximate source-sink solution. The results 
include the temperature distribution in and around the sphere, the form factor and the heat flux distribution 

along the medium surface. 

NOhlENCLATURE 

scale factor for the bispherical coordinates, 
sinh PO ; 
numerical coefficients in the 41 series, 
equation (4); 

numerical coefficients in the 42 series, 
equation (5); 
location of the sphere center beneath the 
surface [m] ; 
form factor; 
internal heat generation [W ma31 ; 
thermal conductivity [W m- ’ K - ‘I; 
integer; 

number of leading terms used in the infinite 
series ; 
Legendre polynomial of the first kind of 
order v ; 

heat flux, nondimensional ; 
radial (horizontal) rectangular coordinate, 
u sin cc/(cosh /I’-cos a); 
the sphere radius [m]; 
temperature [K] ; 
vertical, rectangular coordinate. 

Greek symbols 

‘& P, bispherical coordinates (Fig. 1); 

B 
4:’ 

the sphere surface, cash-’ (D/R); 
temperature, nondimensional. 

Superscripts 

source-sink solution. 

Subscripts 

1, values inside the sphere; 

2. values outside the sphere; 

AV, average. 

1. INTRODUCTION 

THE DETERMINATION of the temperature distribution in 
and around a buried heat source is relevant to the 

solution of many engineering problems such as burial 
of nuclear waste, storage of nuclear materials and 
cooling of electrical equipment. 

A sphere of radius R and uniform heat generation y 
is considered. The sphere center is located at depth D 
beneath the isothermal surface of a semi-infinite 
medium (Fig. 1). The method of analysis most often 
used in determining the temperature distribution in 
and around a buried sphere is based upon the super- 
position of source and sink solutions [l-3]. The above 

yields exact results for the special case when the 
thermal conductivity of the sphere equals that of the 
semi-infinite medium. When the thermal conducti- 
vities differ, however, the source-sink solution may 

only serve as an approximation, whose accuracy 
deteriorates as the burial depth (D/R) decreases. The 

purpose of this paper is to provide an exact solution 
which will be valid regardless of the sphere burial 
depth or the ratio of the thermal conductivities and to 
compare it with the source-sink solution in order to 
establish when the approximation can be used. 

Exact analytical solutions for a buried sphere can be 
obtained by applying a bispherical coordinate system 
[4-61. Such a coordinate system is ‘natural’ for this 
problem since the boundary conditions-the sphere 
and the semi-infinite medium surfaces-are located 
along a constant value coordinate (Fig. 1). Con- 
sequently, the heat conduction equation is separable. 

The bispherical coordinate system has been used 
previously to solve heat transfer problems from an 
isothermal sphere buried beneath isothermal [4, 81, 

adiabatic [6, 81, and convecting surfaces [7]. 

2. ANALYSISEXACT SOLUTION 

Consider a sphere of radius R, thermal conductivity 
k,, and uniform heat generation g, whose center is 
located at depth D below the surface of a semi-infinite 
solid (Fig. 1). The surface temperature of the semi- 
infinite solid is uniform, and its thermal conductivity is 
k,. We use R as the length scale and (gR2)/k, as the 
temperature scale. The steady-state, non-dimensional 
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+ C, sinh[(n + t)&] e”’ + ~)/~~~. (6) 

The factor (cash fl - cos 2)’ ’ causes some trouble 
when we apply the requirement ofcontinuous heat flux 
at /I = /I0 since we cannot equate the resulting series 

written below on a term by term basis, 

I 
1 C”[/& + Ii” cos c!] P, (cos a) 

n=o 
‘I 

where 

= c [h” + r,cos ct] P, (cos cc) (7) 
“=O 

FIG 1. The bispherical coordinate system. h, = (n + ))cosh /I0 {sinh[(n + t)&] 

temperature 4Jr, z) can be found by solving the heat 
equation - 

+ (k,/k,)cosh[(n + #a]) 

$1 - (k,/k,)] sinh[(n + t)&] sinh /lo, 

V2& = 
- 1 in the sphere (i = 1). d, = - (n + i) {sinh[(n + #,,] 

0 outside the sphere (i = 2) 

(1) 

+ (k,ikr)cosh[(~r + %%,I), 

where 4, and 42 respectively denote temperatures 

inside and outside the sphere. The above geometry can 
be described in more convenient form through the use 
of a bispherical coordinate system. This is achieved by 

using the mapping [4-61 

J2 II, = T (211 + 1) eel” + &cosh /I,,, 

e 
P! 

= z?!2(2,t + l)e--cK + U,,, 
3 

i + ir = iacot[(cc + ij)/2], 
With the aid of the recurrence relation 

0<%<7l, - x < Ir < % (2) cos a P&OS a) = ~~ ‘L 
i i 2n + I 

P,_ , (cos Lx) 

where surfaces of tl = constant and b = constant 

appear respectively as orthogonal spindles and spheres 
(Fig. 1). The sphere surface is b = PO = coshh r (D/R) 

+ P n+ I (cos co. (8) 

and the scale factor is (I = sinh &. The appropriate 
boundary conditions are 

we obtain a set of linear equations for the coefficients 

C. 
d, finite at b + x, (3a) ‘. , 

4r = 4z and k, c$ = k,$ at p = PO. (3b) 
Cob, + f C,d, = /I, + fe, 7 

42 =o at p = 0. (3c) 
C,m, d,-,+ c,h, + 

Applying boundary conditions (3a) and (3~) we obtain ’ = 

i i 
__~ 

the following solutions : 2n - 1 

~, = _! a2coshB 
3 (cash /I - cos c() 

+ (cash a - cos cz)’ ” 

x i A, e-If1 + M P,(cos a), (4) 
n=O 

& = (cash p - cos a)l ’ 

x i C,, sinh[(n + ))/?I P,(cos 2). (5) 
n=o 

The constant coefficients A, and C, are to be estab- 
lished with the aid of the matching conditions (3b) at 

P = PO. 
The requirement of temperature continuity at p = 

&, yields 

A = a2J2 
n ?(2n+ l)coth&+ 

This set of equations cannot be solved since any N 
equations involve N + 1 unknowns. However, since C, 
is a decreasing series, it can be truncated at some n = 
N. Should we set C, + , = 0, the above equations (7) 
can be solved in a closed form for any N. 

An alternative method of solution can be obtained 
by constructing an additional equation 

- 2nk, 

for any constant b > &. (10) 

The RHS of equation (10) represents the total rate of 
heat generated in the sphere, while the LHS represents 
the total rate of heat flow through any a = constant 
surface enclosing the sphere. Evaluation of the integral 
in equation (10) leads to the equation 
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“2. C” = $ (k,lk,). (11) 

Now if we truncate equations (9) and (1 l), we obtain a 
closed set which can be solved for any N. 

In the special case of (k,/k,) = 1, we obtain the 
closed form solution 

(k,/k,)em’2”+1)Po n = 0, 1, 2, . 

(12) 

For more general circumstances (k,/k, # l), we use 
a numerical procedure. As mentioned earlier, we can 

either solve the set (9) alone or solve equations (9) and 
(11) together. The latter method enjoys quicker con- 
vergence but is susceptible to truncation errors. Hence, 
if great accuracy is desired the first method is 

preferable. 
The numerical technique takes advantage of the fact 

that the matrix of coefficients in equation (9) is 
essentially tridiagonal; because of this, we can apply a 
modified version of the Gauss-Jordan elimination 
technique, in which a special provision is added to 
diagonalize equation (11). By doing this, we avoid 
matrix inversion and save computer storage space 
(only three coefficients have to be stored for each 

equation). 

As a convergence criteria, we require 

l-&Yic 
&, 

N, > N (13) 

where & is obtained by truncating the equations (9) 
and (11) at some value N. In the calculations presented 
here, we use N, = N + 5 and c < 0.001. The 

I I I I I , I l”J 
0 a TT 

FIG. 2. The temperature distribution on the sphere surface is 
shown for spheres buried at various depths. The medium- 
sphere thermal conductivity ratio (k,/k,) is 0.1. The solid 
curves and the circles represent, respectively, exact and 
approximate results. The dashed line represents a solution for 

a sphere buried in an infinite medium. 

convergence is fairly rapid. For example, for /I, = 0.2 

(D/R = 1.02), and for /I,, = 2 (D/R = 3.76), we need 
N = 35 and N = 4, respectively. 

The fact that C,\, decays exponentially aids in 
estimating the number N needed to satisfy condition 
(13). We use equation (5) to evaluate 4z at point z = 0 
on the sphere surface (/l = &). Next, we replace the 
sinh term in equation (5) with an exponent. The 
resulting infinite and truncated series are geometric; 
consequently they can be summed. Stipulating that 1 

- 4Vl4, < i:, we get 

N> _!!? 
’ PO 

(14) 

which provides an estimate for the number of terms N 
needed to achieve desired accuracy. Criteria (14) and 
(13) give comparable results. 

3. THE SOURCE-SINK SOLUTION 

A heat source and a heat sink of equal strength are 

placed at equal distances (D/R) on both sides of the 
isothermal surface. The temperature distribution is 
separately calculated for a heat source and a heat sink 
in an infinite medium, and then the two solutions are 
superposed. The resulting temperature distribution 

inside the sphere (4,) is 

8, = ii1 - 6, + ~(k,!U (1 - $1 r < l(l5) 

and outside the sphere 

4, = $W,) ,$ - L i i t-21 (16) 
r2 

where rl and r2 are the distances from the source and 
the sink, respectively. In terms of the rectangular 
coordinates (r, z), r, and r2 can be expressed as 

r L,z = [(z +_ D/R)* + r’]’ ’ (17) 

where the ( - ) and ( + ) signs refer to rl and r2, 

respectively. 
Expressions (15) and (16) are exact in the special 

case of (k,/k,) = 1. In this case equations (15) and (16) 
are equivalent to equations (4) and (5). In the more 
general case of (k,/k,) # 1, equations (15) and (16) 
provide an approximation whose accuracy improves 
as the burial depth is increased. The comparison 

between the exact and approximate results is given in 
the next section. 

4. RESULTS AND DISCUSSION 

In this section we present the temperature distri- 
bution in and around the sphere (Figs. 2-6), the form 
factor (Fig. 7), and the heat flux distribution along the 
surface of the medium (Figs. 8-9) for spheres buried at 
various depths and for various thermal conductivity 
ratios (k,/k I). The exact solution, presented as a solid 
line, is compared to the approximate sink-source 
solution (denoted by circles). 



4.1. temperature disrr~but~(}il in and arowd the sphere 
Often, as in the case of nuclear waste burial, one has 

to verify that the temperatures inside the sphere and on 
its surface do not exceed certain values. For this 
purpose knowledge of the temperature field is 
important. 

The temperature distribution around the sphere 
surface is given in Figs, 2 and 3. Figure 2 shows the 
effect of the burial depth. As the burial depth increases 
the surface temperature increases as well, the tempera- 
ture profile flattens and the deviation between the 
exact and approximate solutions decreases. For D/R 
2 4 the deviation is smaller than 2oi,. For large D/R 

both solutions resemble those of a sphere buried in an 
infinite medium, for which b, = k,/3k, (dashed line in 
Fig. 2). 

The effect of the thermal conductivity ratio is 
examined in Fig. 3 for a sphere buried at depth D/R = 
1.128 (/I,, = 0.5). As the ratio kz/k, decreases (the 
relative conductivity of the sphere increases} the tem- 
perature distribution becomes more uniform. An in- 
crease in the thermal conductivity of the medium 
results in lower temperatures at the sphere surface. 
Roughly speaking. the temperature at the sphere 
surface is inversely proportional to the ratio k2$ ,. For 
the special case of (k>/k,) = 1, the approximation 
becomes exact and the circles coincide with the solid 
lines. 

The axial temperature profile inside the sphere is 
shown in Fig. 4 for various burial depths. The maxi- 
mum temperature is achieved at a point below the 
sphere center. As the burial depth increases the 
temperature inside the sphere becomes more uniform 
and the apex approaches the sphere center. For small 

1.0 

FIG. 3. The temperature distribution on a sphere surface 
buried at depth D/R = 1.128 (/lo = 0.5) is shown for various 
medium-sphere thermal conductivity ratios (k,/k ,). The solid 
curves and the circles represent, respectively, exact and 

approximate results. 

burial depths the approximate solution exhibits non- 
physical behavior in which the maximum temperature 
occurs at the sphere bottom. Similar results are evident 
in Fig. 5 where the temperature apex relative to the 
sphere center (the ordinate) is shown as a function of 
the burial depth. As noted earlier, the temperature apex 
approaches the sphere center as the burial depth 
increases. This trend is accelerated as the relative 
thermal conductivity of the sphere decreases. The 
magnitude of the maximum temperature is shown in 
Fig. 6 as a function of the burial depth. The maximun~ 
temperature increases with increasing burial depth 
and approaches asymptotically the corresponding 
value of a sphere buried in an infinite medium for 
which Q,,,;,, = k,,/3k, + l/6 (dashed line in Fig. 6). The 
approximate solution is exact for k,/k, = 1 and gives 
good results for k,/k, 2 1 even for small burial depths. 
For k,jk, < I, the approximation is good within 2% 
for D/R > 4. 

A form factor (F) for the heat generating sphere can 
be defined in the following way: 

Q 
F=----.-=3 k,(T,v - TX!,) 

4 (k,/kz) ;t 

where T,, and Ts,, are the dimensional average 
temperatures of the sphere and the surface, respec- 
tively. $*v is the average nondimensional temperature. 
By integrating equations (4) and (15) over the sphere 
volume, we obtain the exact average temperature 

4*v = - k [3 cash’ &, + 1 + 2a2] 

+ (2a)’ 2 c A,e-(2”+1)sS), (18) 
n=ll 

and the approximate one, 

FIG. 4. The axial temperature distribution is shown for 
various burial depths. The thermal conductivity ratio k,/k, = 
0.1. The solid lines and the circles represent, respectively, 

exact and approximate results. 
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FIG. 5. The location of the maximum temperature inside the 
sphere as a function of the burial depth (D/R) is shown for 
various sphere-medium thermal conductivity ratios. The solid 
lines and the circles represent the exact and approximate 

solutions, respectively. 

It can be easily shown that equations (18) and (19) are 
identical in the special case of (kJk,) = 1. 

The average temperature 4AV and the form factor F 
are shown in Fig. 7. The average temperature increases 
with the burial depth and approaches asymptotically 
the value of ~~/3~~ + l/l 5 (dashed line in Fig. 7). The 
accuracy of the approximation (19) improves as the 

D/R 
1.0 1.5 2 3 L 10.0 

/ I / 
________--_-_-.---___----- 

burial depth increases. For D/R 2 2 the approxi- 
mation is correct within 2%. 

The ordinate of Fig. 7 is inversely proportional to 
the form factor. We compare our form factors to the 
one given by Weihs and Small [S] for an isothermal 
sphere buried beneath an isothermal surface (shown as 
dash-dot line in Fig. 7). For spheres with high thermal 
conductivity (small k,/k,) their shape factor ap- 
proaches ours as the burial depth increases. For 
example, for (k,/k,) = 0.1 and D/R > 1.8, the 
deviation between their resultsand ours is smaller than 
3%. 

4.3. The heat ,ffux ~istri~~ti#~ at the rned~~~ surface 
The heat fiux distribution at the solid surface 

(p = 0) is presented in Figs. 8 and 9. In both figures the 
ordinate is the nondimensional heat flux 4, and the 
abscissa is the coordinate c(. The heat flux is scaled by 
the group gR. The exact value for the nondimensional 
heat flux (q) at the surface is calculated from 

k, cash p - cos GI SC+, 
Y=k 

C 1 
(20) 

I a csg py 

and the approximate value for the heat flux (43 is 

1 
k,lk,:lO 
----- o-____ 0.2 

FIG. 6. The maximum temperature inside the sphere as a 
function of the burial depth (D/R) is shown for various sphere- 
medium thermal conductivity ratios. The solid lines and the 
circles represent the exact and approximate solutions, re- 
spectively. The dashed lines are asymptotic solutions for 

FIG. 7. The average temperature inside the sphere and the 
form factor (F) are shown as a function of the buriai depth 
(D/R). The solid lines and the circles represent the exact and 
approximate solutions, respectively. The dotted line is the 

spheres buried in an infinite medium. form factor from ref. [8] for an isothermal sphere. 

2 DIR 
- (21) z=O = 5 [(D/‘R)2 + r’]““. 

Again the source-sink solution (21) is exact in the 
special case of (k,/k,) = 1. The effect of the thermal 
conductivity ratio k,/k, on the heat flux distribution 
along the solid surface is demonstrated in Fig. 8. The 
approximate heat flux distribution [&equation (21)] is 
independent of the ratio k,/k,. In contrast, the exact 
heat flux distribution along the solid surface varies 
with kJk,. As the ratio k,Jk, decreases, greater 
amounts of heat are released immediately above the 
sphere. The sphere cross-section is shown schemati- 
cally in the right hand corner of Fig. 8. 



1706 HAIM H. BAI 

k2fk,z0.i -.__ 

q 

t 

i 
02 

t 

0.1 

~ 

0 n 
(I 

Ftc;. 8. 7be heat flux atorrg the medium surface resulting from 
a sphere buried at depth D/R = I.543 (& = 1.0) is shown for 
various medium-sphere thermal conductivity ratios (k,/k,). 
The solid curves and the circles represent exact and ap- 

proximate results, respeetiveiy. 

In Fig, 9, the effect of the burial depth (D/R) on the 
heat flux distribution (q) at the surface (p = a) is 
examined. The abscissa f’~) is somewhat misfeading, 
since the same values of a correspond to different 
horizontal distances (r) for the different curves. To 
facilitate comparison, the projection of the sphere 
(same size in all eases) is presented with a broken line in 
the right hand corner of Fig. 9. Also, a table is 
presented at the top of the left side translating a few c1 
values into rvalues for the different cases. As the depth 
of the sphere center (Ran) increases, the heat flux is 
distributed on a larger area, and the peak at the sphere 
axis decreases. Also, as the burial depth increases, the 
approximate solution (21) approaches the exact one 

(W). 

5. CONCLUSION 

Procedures for obtaining exact and approximate 
temperature d~st~butions in and around a heat gen- 
erating buried sphere have been presented. The exact 
solution was obtained using a bispherical coordinate 
system. The source-sink solution provides exact re- 
sults for the special case when the thermal con- 
ductivities of the sphere and the medium equal each 
other and serves as an approximation in all other cases. 
The approximations for the temperature field and for 
the form factor are correct within Za/, for D b 4R and 0 
> 2R, respectively. 

a.7 
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I%. 9. The beat flux djstributjon along the medium surf&e is 
shown for spheres buried at various depths. The medium- 

sphere thermal conductivity ratio is 0.i. 
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DISTRIBUTION DE TEMPERATURE DANS ET AUTOUR D’UNE SPHERE ENTERREE ET 
THERMOGENE 

R&urn&On prkente une solution analytique exacte pour la distribution stationnaire de temp&ature dans 
et autour d’une sphdre source de chaleur enter& dans un solide semi-infmi avec une surface isothe.rme. Cette 
analyse ne demande pas que les conductivit& thermiques du milieu et de la sphBre soient 6gales. La solution 
exacte obtenue en utilisant un systtme de coordonnCes bisphtriques est comparte avec une solution 
approchte de puit-source. Les rtsultats incluent la distribution de temperature dans et autour de la sphere, le 

facteur de forme et la distribution du flux de chaleur sur la surface libre. 

TEMPERATURVERTEILUNG INNERHALB UND IN DER UMGEBUNG EINER 

EINGEGRABENEN WARMEERZEUGENDEN KUGEL 

Zusammenfassung-Es wird eine exakte analytische LGsung fiir die stationlre Temperaturverteilung 
innerhalb und in der Umgebung einer wgrmeerzeugenden Kugel angegeben, die von einem halbunendlichen 
Feststoff mit einer isothermen OberlILhe unschlossen ist. Die Ableitung erfordert nicht, da13 die thermische 
Leitfshigkeit des Mediums und der Kugel gleich sein miissen. Die exakte LGsung, die unter Verwendung 
eines bisphgrischen Koordinatensystems abgeleitet wurde, wird mit einer niiherungsweisen Quellen-Senken- 
LGsung verglichen. Die Ergebnisse enthalten die Temperaturverteilung innerhalb und in der Umgebung der 

Kugel, den Formfaktor und die WBrmestromdichten-Verteilung an der Oberfllche des Mediums. 

PACnPEAEJIEHME TEMnEPATYP BHYTPM M BOKPYI- IIOI-PYXEHHOI-0 
TEnJIOBbI~EJI5IIO~EFO 0PEPWYECKOTO TEJIA 

AHHoraunn-aaH ToYHoe aHanUTAqecxoe pememie AInn clauaoxapuoro pacnpenenemia TeMnepaTyp 
BHYTPA H ao~pyr Tennoab1nenawmero c+eperecroro rena, noMemeHHor0 BHyTpb nOny6eCKOHe4HOrO 
TBC,,AOrO TeAa C U30TCPMH'ICCKOfi IIOBCpXHOCTbEO. PaBCHC-rBO W,,TOnpOBOAHOCTCfi AByX TCJI HC 

npennonarae-rca. fIpoeeneH0 cpaaHeHHe ~0~~0r0 pemerlan, nonyqeHHor0 c noMombm 6ac$ep~~ecKofi 
CHCTCMbIKOO~AItlH~T,C~~rt6n~~CHHblM~CuICHNCM~OMC~OA~“ACTO'IHAK-CTOK". OIIpCAC.WHbI npO&iJlH 

TeMnepaTyp BHYTPM A eoxpyr cf$epaqecroro Tena, +opM-@axTop H pacnpeneneHIte nnoTHocTH 
Tennoaoro noToKa no nosepxHocTn Tsepnoro Tena. 
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