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Abstract—An exact analytical solution is presented for the steady-state temperature distribution in and

around a heat generating sphere buried in a semi-infinite solid with an isothermal surface. This analysis does

not require that the thermal conductivities of the medium and the sphere be equal. The exact solution, derived

using a bispherical coordinate system, is compared with an approximate source-sink solution. The results

include the temperature distribution in and around the sphere, the form factor and the heat flux distribution
along the medium surface.

NOMENCLATURE

d, scale factor for the bispherical coordinates,
sinh f,;

A, numerical coefficients in the ¢, series,
equation (4);

Cn numerical coefficients in the ¢, series,
equation (5);

D, location of the sphere center beneath the
surface [m];

F, form factor;

g internal heat generation [W m™3];

k. thermal conductivity [Wm™* K~ '];

n, integer ;

N, number of leading terms used in the infinite
series ;

P, Legendre polynomial of the first kind of
order v;

q, heat flux, nondimensional;

r, radial (horizontal) rectangular coordinate,

a sin o/(cosh p-cos a);

R, the sphere radius [m];
T, temperature [K];
z, vertical, rectangular coordinate.

Greek symbols

a f, bispherical coordinates (Fig. 1);

Bo- the sphere surface, cosh™' (D/R);

¢, temperature, nondimensional.
Superscripts

source—sink solution.

Subscripts

1, values inside the sphere;

2, values outside the sphere;

AV, average.

1. INTRODUCTION

THE DETERMINATION of the temperature distribution in
and around a buried heat source is relevant to the

solution of many engineering problems such as burial
of nuclear waste, storage of nuclear materials and
cooling of electrical equipment.

A sphere of radius R and uniform heat generation g
is considered. The sphere center is located at depth D
beneath the isothermal surface of a semi-infinite
medium (Fig. 1). The method of analysis most often
used in determining the temperature distribution in
and around a buried sphere is based upon the super-
position of source and sink solutions [1-3]. The above
yields exact results for the special case when the
thermal conductivity of the sphere equals that of the
semi-infinite medium. When the thermal conducti-
vities differ, however, the source-sink solution may
only serve as an approximation, whose accuracy
deteriorates as the burial depth (D/R) decreases. The
purpose of this paper is to provide an exact solution
which will be valid regardless of the sphere burial
depth or the ratio of the thermal conductivities and to
compare it with the source-sink solution in order to
establish when the approximation can be used.

Exact analytical solutions for a buried sphere can be
obtained by applying a bispherical coordinate system
[4-6]. Such a coordinate system is ‘natural’ for this
problem since the boundary conditions—the sphere
and the semi-infinite medium surfaces—are located
along a constant value coordinate (Fig. 1). Con-
sequently, the heat conduction equation is separable.

The bispherical coordinate system has been used
previously to solve heat transfer problems from an
isothermal sphere buried beneath isothermal [4, 8],
adiabatic [6, 8], and convecting surfaces [7].

2. ANALYSIS—EXACT SOLUTION

Consider a sphere of radius R, thermal conductivity
k,, and uniform heat generation g, whose center is
located at depth D below the surface of a semi-infinite
solid (Fig. 1). The surface temperature of the semi-
infinite solid is uniform, and its thermal conductivity is
k,. We use R as the length scale and (gR?)/k, as the
temperature scale. The steady-state, non-dimensional
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F1G. 1. The bispherical coordinate system.

temperature ¢,(r, z) can be found by solving the heat
equation

—1 in the sphere (i = 1).

V2 . =
¢ 0 outside the sphere (i = 2),

(1)
where ¢, and ¢, respectively denote temperatures
inside and outside the sphere. The above geometry can
be described in more convenient form through the use
of a bispherical coordinate system. This is achieved by
using the mapping [4-6]

z + ir = iacot[{a + ip)/2],

0<agn, —w<f<x

@)

where surfaces of o = constant and f = constant
appear respectively as orthogonal spindles and spheres
(Fig. 1). The sphere surface is B = B, = cosh ™' (D/R)
and the scale factor is @ = sinh f§,. The appropriate
boundary conditions are

¢, finite at f - =, (3a)

b1 =drand k, 0=, 2 wip o, (ab)
g

¢, =0 at f=0. (3¢

Applying boundary conditions (3a) and (3c), we obtain
the following solutions:

I da*coshf

=— -~ " 4 (coshp —cosa)!?
g 3 (cosh B — cosa) ( p )
x Y A,e v+ P(cosa), (4)
n=0
¢, = (cosh B — cosa)' 2

x ¥ C,sinh[(n + 3)B] Pfcosa). (5)
n=0
The constant coefficients 4, and C, are to be estab-
lished with the aid of the matching conditions (3b) at
ﬁ = ﬂo-
The requirement of temperature continuity at f =
Bo yields

2
2
An=“;/ (2n + 1) coth By +
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+ C,sinh[(n + HBole” t 2. (6)
The factor (cosh f — cosa)!? causes some trouble
when we apply the requirement of continuous heat flux
at § = B, since we cannot equate the resulting series

written below on a term by term basis,

Y C,[b, + d,cosa] P, (cos x)
=0

= Z [(h, + e,cosa] P,(cosa) (7)
n=0

where
b, = (n + Hcosh B, {sinh[(n + HB,]

+ (ky/ky) cosh[(n + DB, ]]

— 3[1 — (ky/k,)] sinh[(n + 3)Bo] sinh B,

dy = — (n + 3){sinh[(n + 5)B,]

+ (ky/k ) cosh[(n + 5)Bol}s

2 !
N (2n + e+ Db cosh B,

hy = "+
3

Lye—tn+ D,

With the aid of the recurrence relation

"
cosa P (cosa) = <

— P, (c
s )P steosn

)Pm (cos ), (8)

+('n+1
2n+ 1

we obtain a set of linear equations for the coefficients
C

)| 1
CObO + ECldl = ]70 + 3@1’

n n4 1
<2Vl _ 1)Cnfl dn41+ C"bn + <§T§>C"+l dn+1

n n+1
(e, L P
<2n—1>e l+h"+<\2n+3> el @)

This set of equations cannot be solved since any N
equationsinvolve N + 1 unknowns. However, since C,
is a decreasing series, it can be truncated at some n =
N. Should we set C,,, = 0, the above equations (7)
can be solved in a closed form for any N.

An alternative method of solution can be obtained
by constructing an additional equation

07 2 4
ok J <7>d =37

for any constant § = B,. (10)

The RHS of equation (10) represents the total rate of
heat generated in the sphere, while the LHS represents
the total rate of heat flow through any = constant
surface enclosing the sphere. Evaluation of the integral
in equation (10) leads to the equation
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"= (ka/ky).

e w2 (11)
a

1M

Now if we truncate equations (9) and (11), we obtain a
closed set which can be solved for any N.

In the special case of (k,/k;) = 1, we obtain the
closed form solution

22
q=(%ﬁwﬂnemﬂm»n=anzm.
(12)

For more general circumstances (k,/k, # 1), we use
a numerical procedure. As mentioned earlier, we can
either solve the set (9) alone or solve equations (9) and
(11) together. The latter method enjoys quicker con-
vergence but is susceptible to truncation errors. Hence,
if great accuracy is desired the first method is
preferable.

The numerical technique takes advantage of the fact
that the matrix of coefficients in equation (9) is
essentially tridiagonal ; because of this, we can apply a
modified version of the Gauss-Jordan elimination
technique, in which a special provision is added to
diagonalize equation (11). By doing this, we avoid
matrix inversion and save computer storage space
(only three coefficients have to be stored for each
equation).

As a convergence criteria, we require

1 — Lf)l < &
Ny

N, >N (13)
where ¢ is obtained by truncating the equations (9)
and (11) at some value N. In the calculations presented
here, we use N, = N + 5 and ¢ < 0.001. The

S Gy -
L Bo=30 (D/R=10.07)

3, Bo=2.0 (D/R=3.762) =
L,

F1G. 2. The temperature distribution on the sphere surface is

shown for spheres buried at various depths. The medium-

sphere thermal conductivity ratio (k,/k;) is 0.1. The solid

curves and the circles represent, respectively, exact and

approximate results. The dashed line represents a solution for
a sphere buried in an infinite medium.
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convergence is fairly rapid. For example, for 8, = 0.2
(D/R = 1.02), and for B, = 2 (D/R = 3.76), we need
N = 35and N = 4, respectively.

The fact that C, decays exponentially aids in
estimating the number N needed to satisfy condition
(13). We use equation (5) to evaluate ¢, at point 2 = 0
on the sphere surface (f = f,). Next, we replace the
sinh term in equation (5) with an exponent. The
resulting infinite and truncated series are geometric;
consequently they can be summed. Stipulating that 1
— $n/d, < & we get

Ing

B

which provides an estimate for the number of terms N
needed to achieve desired accuracy. Criteria (14) and
(13) give comparable results.

N2 (14)

3. THE SOURCE-SINK SOLUTION

A heat source and a heat sink of equal strength are
placed at equal distances (D/R) on both sides of the
isothermal surface. The temperature distribution is
separately calculated for a heat source and a heat sink
in an infinite medium, and then the two solutions are
superposed. The resulting temperature distribution
inside the sphere (@,) is

1 1
b = u—m+§ww»0—7)r<uw>

2/

N -

and outside the sphere

_ 1 1
¢ = (ky/ky) (r_ - ‘) rzl (16)
i

1
3 ry

where r, and r, are the distances from the source and
the sink, respectively. In terms of the rectangular

coordinates (r, z), r, and r, can be expressed as

ria2 =[x D/RP + ]2 (17

where the {(—) and (+) signs refer to r, and r,,
respectively.

Expressions (15) and (16) are exact in the special
case of (k,/k,) = 1.1In this case equations (15) and (16)
are equivalent to equations (4) and (5). In the more
general case of (k,/k,) # 1, equations (15) and (16)
provide an approximation whose accuracy improves
as the burial depth is increased. The comparison
between the exact and approximate results is given in
the next section.

4. RESULTS AND DISCUSSION

In this section we present the temperature distri-
bution in and around the sphere (Figs. 2-6), the form
factor (Fig. 7), and the heat flux distribution along the
surface of the medium (Figs. 8-9) for spheres buried at
various depths and for various thermal conductivity
ratios (k,/k,). The exact solution, presented as a solid
line, is compared to the approximate sink—source
solution (denoted by circles).
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4.1. Temperature distribution in and around the sphere

Often, as in the case of nuclear waste burial, one has
to verify that the temperatures inside the sphere and on
its surface do not exceed certain values. For this
purpose knowledge of the temperature field is
important.

The temperature distribution around the sphere
surface is given in Figs. 2 and 3. Figure 2 shows the
effect of the burial depth. As the burial depth increases
the surface temperature increases as well, the tempera-
ture profile flattens and the deviation between the
exact and approximate solutions decreases. For D/R
= 4 the deviation is smaller than 2%. For large D/R
both solutions resemble those of a sphere buried in an
infinite medium, for which ¢ = k,/3k, (dashed line in
Fig. 2).

The effect of the thermal conductivity ratio is
examined in Fig. 3 for a sphere buried at depth D/R =
1.128 (B, = 0.5). As the ratio k,/k, decreases (the
relative conductivity of the sphere increases) the tem-
perature distribution becomes more uniform. An in-
crease in the thermal conductivity of the medium
results in lower temperatures at the sphere surface.
Roughly speaking, the temperature at the sphere
surface is inversely proportional to the ratio k,/k . For
the special case of (k,/k,) = 1, the approximation
becomes exact and the circles coincide with the solid
lines.

The axial temperature profile inside the sphere is
shown in Fig. 4 for various burial depths. The maxi-
mum temperature is achieved at a point below the
sphere center. As the burial depth increases the
temperature inside the sphere becomes more uniform
and the apex approaches the sphere center. For small

3.0 LN T T T T

1 1 1

0.75n n

L

0.03 L

1, 1
0 0.25m 0.50m

a

FiG. 3. The temperature distribution on a sphere surface

buried at depth D/R = 1.128 (8, = 0.5) is shown for various

medium-sphere thermal conductivity ratios (k,/k, ). The solid

curves and the circles represent, respectively, exact and
approximate results.
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burial depths the approximate solution exhibits non-
physical behavior in which the maximum temperature
occurs at the sphere bottom. Similar results are evident
in Fig. 5 where the temperature apex relative to the
sphere center (the ordinate) is shown as a function of
the burial depth. As noted earlier, the temperature apex
approaches the sphere center as the burial depth
increases. This trend is accelerated as the relative
thermal conductivity of the sphere decreases. The
magnitude of the maximum temperature is shown in
Fig. 6 as a function of the burial depth. The maximum
temperature increases with increasing burial depth
and approaches asymptotically the corresponding
value of a sphere buried in an infinite medium for
which ® = k,/3k, + 1/6 (dashed line in Fig. 6). The
approximate solution is exact for k,/k, = 1 and gives
good results for k,/k, = 1 even for small burial depths.
For k,/k, < 1, the approximation is good within 2%
for D/R = 4.

4.2. The form factor
A form factor {F) for the heat generating sphere can
be defined in the following way:

F- .2  _*

where T,y and Ty are the dimensional average
temperatures of the sphere and the surface, respec-
tively. ¢ ,v is the average nondimensional temperature.
By integrating equations (4) and (15) over the sphere
volume, we obtain the exact average temperature

1
Doy = — ﬁ[3 cosh? B8, + 1 + 2a%]

+(2a)1’2 Z Aue-anﬂwn’ (18)

n=0

and the approximate one,

1 1 1R
T (3 - 85>(k1/k2).

Pav (19)

~1.0

1

FiG. 4. The axial temperature distribution is shown for

various burial depths. The thermal conductivity ratio k,/k, =

0.1. The solid lines and the circles represent, respectively,
exact and approximate results.
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-1.0 . L ! ' f 3 1 s 3 t
8

F1G. 5. The location of the maximum temperature inside the

sphere as a function of the burial depth (D/R) is shown for

various sphere-medium thermal conductivity ratios. The solid

lines and the circles represent the exact and approximate
solutions, respectively.

It can be easily shown that equations (18) and (19) are
identical in the special case of (k,/k;) = 1.

The average temperature ¢,y and the form factor F
are shown in Fig,. 7. The average temperature increases
with the burial depth and approaches asymptotically
the value of k,/3k, + 1/15 (dashed line in Fig. 7). The
accuracy of the approximation (19) improves as the

2 3 4 100

@md:

0.5

ky/ky = 1.0

L —0.3
1 -
ky/ky =10
[ e ~02
i
r -104
1 it ! . : 1 . . 1
0 1 2 30
B,

FiG. 6. The maximum temperature inside the sphere as a

function of the burial depth (D/R)is shown for various sphere-

medium thermal conductivity ratios. The solid lines and the

circles represent the exact and approximate solutions, re-

spectively. The dashed lines are asymptotic solutions for
spheres buried in an infinite medium.
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burial depth increases. For D/R 2 2 the approxi-
mation is correct within 2%,

The ordinate of Fig. 7 is inversely proportional to
the form factor. We compare our form factors to the
one given by Weihs and Small [8] for an isothermal
sphere buried beneath an isothermal surface (shown as
dash-dot line in Fig. 7). For spheres with high thermal
conductivity (small k,/k,) their shape factor ap-
proaches ours as the burial depth increases. For
example, for (k,/k,) = 0.1 and D/R > 18, the
deviation between their results and ours is smaller than
3%.

4.3. The heat flux distribution at the medium surface

The heat flux distribution at the solid surface
(B = 0)is presented in Figs. 8 and 9. In both figures the
ordinate is the nondimensional heat flux ¢, and the
abscissa is the coordinate «. The heat flux is scaled by
the group gR. The exact value for the nondimensional
heat flux (g) at the surface is calculated from

k, {cosh f — cosa 3¢,
=S — 20
q K, ( P B Jyeo’ (20
and the approximate value for the heat flux (§) is
_ ks, (8()52 2 D/R
=22 = (21
1= \% ) " stoRe v o W

Again the source-sink solution (21) is exact in the
special case of (k,/k,) = 1. The effect of the thermal
conductivity ratio k,/k; on the heat flux distribution
along the solid surface is demonstrated in Fig. 8. The
approximate heat flux distribution [ 4, equation (21 )} is
independent of the ratio k,/k;. In contrast, the exact
heat flux distribution along the solid surface varies
with k,/k,. As the ratio k,/k, decreases, greater
amounts of heat are released immediately above the
sphere. The sphere cross-section is shown schemati-
cally in the right hand corner of Fig. 8.

ofx

10 15 3 3 L &7%
10 T T T T
0.8 M
06 e

%

0.4
0.2

4] 1 1 L L { 1 1 1 4 H

0 1.0 20

Bo

Fii. 7. The average temperature inside the sphere and the
form factor (F) are shown as a function of the burial depth
{D/R). The solid lines and the circles represent the exact and
approximate solutions, respectively. The dotted line is the
form factor from ref. 8] for an isothermal sphere.
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F16. 8. The heat flux along the medium surface resulting from

a sphere buried at depth D/R = 1.543(#, = 1.0)is shown for

various medium-sphere thermal conductivity ratios (k,/k;).

The solid curves and the circles represent exact and ap-
proximate results, respectively.

In Fig. 9, the effect of the burial depth (D/R)} on the
heat flux distribution (g} at the surface (=0} is
examined. The abscissa {x} is somewhat misleading,
since the same values of o correspond to different
horizontal distances (r) for the different curves. To
facilitate comparison, the projection of the sphere
{same size in all cases) is presented with a broken linein
the right hand corner of Fig. 9. Also, a table is
presented at the top of the left side translating a few o
values into r values for the different cases. As the depth
of the sphere center (D/R) increases, the heat flux is
distributed on a larger area, and the peak at the sphere
axis decreases. Also, as the burial depth increases, the
approximate solution (21) approaches the exact one
{20).

5. CONCLUSION

Procedures for obtaining exact and approximate
temperature distributions in and around a heat gen-
erating buried sphere have been presented. The exact
solution was obtained using a bispherical coordinate
system. The source-sink solution provides exact re-
sults for the special case when the thermal con-
ductivities of the sphere and the medium equal each
other and serves as an approximation in all other cases.
The approximations for the temperature field and for
the form factor are correct within 2% for D = 4Rand D
> 2R, respectively.

Hamm H. Bau
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F1G.9. The heat flux distribution along the medium surface is
shown for spheres buried at various depths. The medium-
sphere thermal conductivity ratio is 0.1
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DISTRIBUTION DE TEMPERATURE DANS ET AUTOUR D’UNE SPHERE ENTERREE ET
THERMOGENE

Résumé—On présente une solution analytique exacte pour la distribution stationnaire de température dans

et autour d’une sphére source de chaleur enterrée dans un solide semi-infini avec une surface isotherme. Cette

analyse ne demande pas que les conductivités thermiques du milieu et de la sphére soient égales. La solution

exacte obtenue en utilisant un systéme de coordonnées bisphériques est comparée avec une solution

approchée de puit-source. Les résultats incluent la distribution de température dans et autour de la sphére, le
facteur de forme et la distribution du flux de chaleur sur la surface libre.

TEMPERATURVERTEILUNG INNERHALB UND IN DER UMGEBUNG EINER
EINGEGRABENEN WARMEERZEUGENDEN KUGEL

Zusammenfassung—Es wird eine exakte analytische Losung fiir die stationdre Temperaturverteilung
innerhalb und in der Umgebung einer wirmeerzeugenden Kugel angegeben, die von einem halbunendlichen
Feststoff mit einer isothermen Oberfliache unschlossen ist. Die Ableitung erfordert nicht, daB die thermische
Leitfihigkeit des Mediums und der Kugel gleich sein muissen. Die exakte Losung, die unter Verwendung
eines bispharischen Koordinatensystems abgeleitet wurde, wird mit einer niaherungsweisen Quellen-Senken-
Losung verglichen. Die Ergebnisse enthalten die Temperaturverteilung innerhalb und in der Umgebung der
Kugel, den Formfaktor und die Warmestromdichten-Verteilung an der Oberfliche des Mediums.

PACIMPEAEJIEHHUE TEMIIEPATYP BHYTPU U BOKPYT IMOI'PYXEHHOI'O
TEITJIOBBIAEJIAIOIWEIO COEPHUYECKOI'O TEJIA

Annoramus—J[aHO TOYHOE aHANHUTHYECKOE PELICHHE 1S CTAUMOHAPHOTO pacrpele/IeHUs TEMIEPATYD

BHYTPH M BOKDYI TEIUIOBBIAEIAIOWIErO CepPUHECKOro Tesa, NOMELIEHHOTO BHYTPb MoJybeckoHeyHoro

TBEPAOro Tejla C H30TEPMHYECKOH IMOBEPXHOCTbIO. PaBeHCTBO TenaompoBOmHOCTEH ABYX Tesl He

npeanonaraercs. [poseieHO cpaBHEHHE TOYHOIO PELICHHs, OY4EHHOrO ¢ NoMollbio Huchepuueckoit

CHCTEMBbI KOOPIHHAT, C TPHOJIHKEHHBIM PELIEHHEM MO METO/Y ‘‘HCTOYHHK-CTOK . Onpeaenensi npoduiu

TeMIepaTyp BHYTPM M BOKpYr cdepuueckoro Tena, ¢opM-pakTop M pacrnpeiesieHHE MJIOTHOCTH
TEIJIOBOTO MOTOKA MO IOBEPXHOCTH TBEPAOro Teja.
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